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In most coa l  g a s i f i c a t i o n  processes ,  r aw coal  i s  i n i t i a l l y  subjected t o  heat 
treatment. Even i n  t h e  presence of reac t ive  gases the i n i t i a l  rapid weight loss of 
the c o a l  can be ascr ibed  pr imar i ly  t o  devola t i l i za t ion .  The r e s u l t a n t  char  is then 
converted t o  des i red  products  i n  subsequent s t e p s .  It i s  believed t h a t  t h e  gas i f i -  
c a t i o n  of the char  is t h e  slow s t e p  i n  the  o v e r a l l  conversion react ions.  The over- 
a l l  char  g a s i f i c a t i o n  process  c o n s i s t s  of a number of reac t ions ,  amongst them the 
steam-carbon and oxygen-carbon reac t ions  are the most important. 
reac t ion  

The steam-carbon 

C 4- H20 + CO + €I2 1) 

is  endothermic and i t s  r a t e  does not  become s i g n i f i c a n t  below about 75OoC. 
required by reac t ion  1 )  can b e  suppl ied by t h e  highly exothermic carbon-oxygen 
reac t ion  

The heat 

C 4- O2 + COP and CO 2 )  

The CO/CO2 r a t i o  is a func t ion  of temperature and carbon monoxide is favored a t  
higher  temperatures. Depending on t h e  na ture  of carbon, t h e  rate of t h i s  react ion 
may become s i g n i f i c a n t  at  a temperature as low a s  35OoC. I n  the o v e r a l l  gas i f ica t ion  
scheme, jud ic ious  combinations of reac t ions  1 )  and 2) a r e  used. It i s  therefore  
necessary t o  obta in  a measure of t h e  r a t e s  of these two react ions using var ious chars 
made from coals  which are p r a c t i c a l  f o r  use i n  g a s i f i e r s .  

Various workers (1) have s tudied the carbon-steam and carbon-oxygen react ions 
using graphi tes .  Because of t h e  pronounced d i f fe rence  i n  inherent  r e a c t i v i t y  of the 
two gases ,  it is  r a t h e r  d i f f i c u l t  t o  ob ta in  values of t h e  r e a c t i v i t y  of a char  for  
the two reac tan ts  at t h e  same temperature. 
Jenkins e t  a l .  (2) determined the  r e a c t i v i t y  parameter, defined la ter  i n  t h i s  report ,  
f o r  a s e r i e s  of coa l  chars  i n  air  a t  500°C. 
prepared by hea t ing  var ious  types of coal  i n  ni t rogen a t  a heat ing r a t e  of 10"C/min 
t o  a maximum heat-treatment temperature of 1000°C. 
r e a c t i v i t y  of t h e  char  w a s  a funct ion of the  rank of t h e  parent coa l ;  the low-rank 
coals  produced chars of much higher  r e a c t i v i t y .  
of t h e  r e a c t i v i t y  parameter w a s  t h e  same, whether t h e  chars  were produced i n  a 
thermobalance (static bed) in milligram q u a n t i t i e s  or in  a f l u i d  bed i n  gram 
q u a n t i t i e s .  

Similar  d a t a  f o r  graphi te  a r e  scanty. 

A l l  t h e  chars i n  Jenkins' work were 

The r e s u l t s  showed t h a t  the  

It was a l s o  shown t h a t  t h e  value 

In our  work the  approach taken w a s  t o  measure the rates of char-steam and char- 
oxygen reac t ions  over a range of temperature, determine the  temperature coef f ic ien t  
of rates (apparent a c t i v a t i o n  energy) of the  separa te  reac t ions ,  and est imate  the 
value of the r e l a t i v e  rates a t  a common temperature. The magnitude of the apparent 
a c t i v a t i o n  energy when compared with the  values  reported f o r  pure carbon may in- 
d i r e x l y  provide some i n s i g h t  i n t o  t h e  mechanisms of both the  react ions.  

Based ix! work performed under the  auspices  of the United S ta tes  Energy Research 
and Devc?lopme.;t Administration. 
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EXPERIMENTAL 

The porous nature ,  p a r t i c l e  s i z e ,  and maximum heat-treatment temperature of  the 
char ,  t h e  rank of t h e  parent  coal ,  and the inorganic  matter present  i n  the  char  a re  
the  var iab les  which may a f f e c t  t h e  r a t e  of t h e  char-oxygen or char-steam reac t ion .  
The r a t e  of heat ing used i n  preparat ion of t h e  char  is  expected t o  a f f e c t  t h e  porous 
na ture  and is not considered as a separa te  var iab le .  
heat ing r a t e ,  and t h e  maximum heat-treatment temperature are kept i n v a r i a n t .  

In t h i s  work t h e  p a r t i c l e  s i z e ,  

Samples 

Four samples of coa l  were se lec ted  f o r  t h i s  work. Three coa ls  are of low rank 
(subbituminous or lower) and t h e  fourth is of MVB rank. There are v a s t  resources  of 
subbituminous coa ls  in Western U.S., and t h e i r  g a s i f i c a t i o n  behavior is of interest. 
The MVB sample was included f o r  comparative purposes. 

The analyses of t h e  samples a r e  shown i n  Table 1. 

Experimental Procedure 
, 

The coal  samples were pyrolysed i n  a tube furnace i n  a flow of n i t rogen  with a 
heat ing rate of E0C/min t o  a maximum temperature of 900°C and held at  t h a t  temperature 
f o r  two hours. The coa l  samples were s ieved and the f r a c t i o n  (35 x 80)  mesh Tyler 
w a s  used. The p a r t i c l e  s i z e  of t h e  char is expected t o  be somewhat smaller. On pyro- 
l y s i s ,  sample 274 produced a coke mass, t h i s  w a s  crushed, and a sieved f r a c t i o n  of 
(35 x 80) mesh was used f o r  t h e  r e a c t i v i t y  determination. 

The react ions were c a r r i e d  o u t  using a thermobalance. A char sample w a s  spread 
uniformly i n  a shallow platinum thennobalance pan. 
% l O  mg, w a s  such that the  bed w a s  about one p a r t i c l e  diameter high. 
were i n i t i a l l y  brought t o  t h e  reac t ion  temperature in nit rogen and a f t e r  s teady  weight 
w a s  a t ta ined ,  the  reactive gas w a s  introduced. Dry a i r  was used f o r  oxygen r e a c t i v i t y  
measurements. Pure ni t rogen w a s  passed through a series of bubblers conta in ing  d i s -  
t i l l e d  water t o  obta in  a p a r t i a l  p ressure  of 2.3 volumn per cent  of water vapor i n  
the  stream. This mixture w a s  used t o  determine the  r a t e  of the steam-char reac t ion .  
The reac t ion  w a s  followed isothermally by means of a thermobalance and t h e  rate w a s  
ca lcu la ted  from t h e  weight l o s s .  
and w a s  such t h a t  t h e  supply of t h e  r e a c t i v e  gas w a s  two orders  of magnitude grea te r  
than could be consumed when t h e  rate of carbon l o s s  w a s  at  t h e  maximum. The temper- 
a t u r e  range f o r  the  oxygen-char reac t ion  w a s  from 350 t o  575'C and f o r  the  steam-char 
reac t ion ,  from 750 t o  900°C. 

The amount of sample used, 
The samples 

The flow r a t e  of the  reac t ive  gas w a s  kept  constant  

(a) Char-Oxygen Reaction 

The percent weight l o s s  based on the weight of o r i g i n a l  sample of char on a dry 
ash-free bas i s  as  a funct ion of t i m e  f o r  274 coke is shown in Fig. 1. The low rate 
observed during t h e  i n i t i a l  per iod  is p a r t i a l l y  due t o  the time required f o r  t h e  air 
t o  replace the ni t rogen from t h e  v i c i n i t y  of the  carbon. This period i s  longer  a t  
lower temperature, which i n d i c a t e s  t h a t  there  is an induct ion period ( the  gas flow 
rate being the same i n  a l l  cases) .  
been explained (3) by assuming t h a t  i n i t i a l l y  oxygen becomes chemisorbed on t h e  
surface.  
carbon. 
i n  poros i ty ,  i.e., i ts  s p e c i f i c  sur face  area increases .  
middle l i n e a r  port ion of Fig. 1 can be regarded a s  a region where the opposing e f f e c t s  
of carbon removal and generat ion of e x t r a  sur face  a rea  a r e  i n  balance. 

The induct ion period i n  carbon-oxygen reac t ion  had 

This is followed by subsequent desorpt ion of the  bound oxygen as oxides of 

From s i m i l a r  arguments, the 
With the removal of carbon from t h e  surface,  the  char remaining increases  

When the 



carbon l o s s  is high, t h e  abso lu te  value of t he  t o t a l  r eac t ive  a rea  i s  decreased, and 
consequetnly, t h e  rate f a l l s  o f f .  
experimental  curves a r e  used t o  ca l cu la t e  t h e  c h a r a c t e r i s t i c  rates. 

I n  t h i s  work, t h e  middle l i n e a r  por t ions  of t h e  

The r eac t iv i ty  parameter w a s  ca lcu la ted  by the  following equation 

1 dw 
% a x = c  dt 

where hx =maximum r e a c t i v i t y  at t h e  experimental temperature expressed as mg of 
char reac ted  per minute p e r  mg of i n i t i a l  sample; wo = i n i t i a l  mass of the  char on 
dry  ash-free b a s i s  and % = maximum r e c t i l i n e a r  weight l o s s  rate (mg. min-'). The 
approach taken to  ob ta in  & is t h e  same as t h a t  of Jenkins et al .  (2) 

The weight l o s s  d a t a  f o r  t h e  air-char r eac t ion  f o r  t h e  o the r  samples are shown 
in  Figs.  2 t o  4. 
Fig. 5. The r e a c t i v i t y  of t he  coke sample (sample 274) was much lower compared w i t h  
those  f o r  the char  samples. 
274, 248 and 247 are s t r a i g h t  l i n e s  i n  t h e  temperature i n t e r v a l .  The va lues  of t he  
apparent ac t iva t ion  energy a r e  near ly  the  same (Q21 kcal/mole) f o r  these  t h r e e  samples. 

Values of the a c t i v a t i o n  energy f o r  the  carbon-oxygen r eac t ion  (1) using pure 

The ca lcu la t ed  values of hX a r e  shown i n  an Arrhenius p l o t  in 

It is a l s o  observed t h a t  t h e  p l o t s  f o r  charlcoke from 

carbon (graphite) have been reported t o  be i n  t h e  range of 37 t o  58 kcal/mole. The 
value,  36.7 kcal/mole, w a s  obtained by Gulbersen and Andrew, (4) who reac ted  th in  
spectroscopic g raph i t e  p l a t e s  between 425 and 575'C under 0.1 atmosphere of oxygen. 
The much smaller va lues  of t he  apparent ac t iva t ion  energy obtained i n  t h i s  work indi- 
c a t e  t h a t  ( i )  c a t a l y s i s  by inorganic matter i n  the  char occurred and/or ( i i )  the re- 
a c t i o n  occurred i n s i d e  small pores whose length are much grea te r  than t h e i r  diameter. 
In t h e  l a t t e r  case Wheeler (5) had shown t h a t  t h e  apparent ac t iva t ion  energy w i l l  be 
equal  i n  magnitude t o  h a l f  the  value of t he  t r u e  ac t iva t ion  energy of reac t ion .  The 
na tu re  of the minerals present  i n  the chars w a s  not determined. However, t h e  pos- 
s i b i l i t y  appears un l ike ly  t h a t  t he  minerals were s imi l a r  i n  na ture  or t h a t  they catalyzed 
t h e  r eac t ion  i n  such a way a s  t o  produce the  same apparent ac t iva t ion  energy fo r  the 
t h r e e  mater ia l s .  
pore d i f fus ion .  The Arrhenius p lo t  f o r  t h e  LLL char is not l i nea r .  I n i t i a l  reac- 
t i v i t y  of this sample is  very  high and t h e  curvature i n  the  p lo t  i nd ica t e s  t h a t  t he  
r eac t ion  a t  high temperature,  f o r  this sample, i s  being p a r t i a l l y  cont ro l led  by bulk 
d i f fus ion .  

This s t rong ly  suggests that  t h e  r eac t ion  i s  being cont ro l led  by 

(b) Steam-char r e a c t i o n  

The experimental d a t a  f o r  t h i s  reac t ion  are presented i n  Figs.  6 t o  9. The 
i n i t i a l  period of l o w  r e a c t i o n  rate is  of much l e s s e r  dura t ion  than i n  the  oxygen- 
char reaction. It has  been repor ted  (1) t h a t  t h e  steam-carbon reac t ion  a l s o  pro- 
ceeds through a chemisorbed oxygen in te rmedia te ,  which may be of a d i f f e r e n t  nature 
than t h a t  i n  the  carbon-oxygen reac t ion .  The much higher temperature used f o r  t he  
carbon-steam reaction may cont r ibu te  t o  a rap id  build-up of a s teady-s ta te  concen- 
t r a t i o n  of chemisorbed spec ie s  on the sur face ,  r e s u l t i n g  i n  a sho r t e r  induction 
period. A l i nea r  rate of weight l o s s  over an extended reac t ion  range is then obtained 
i n  a l l  cases.  This l i n e a r i t y  r e s u l t s  from the  same opposing f a c t o r s  i d e n t i f i e d  
e a r l i e r  f o r  the char-oxygen reac t ion .  

The shape of t h e  curves shown i n  Figs. 7 t o  9 are similar and show a quali-  
t a t i v e  resemblence t o  t h e  curves obtained i n  char-air  reac t ion .  The d a t a  f o r  the 
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coke shown i n  Fig. 6 are qu i t e  d i f f e ren t .  
A poss ib le  way of expla in ing  the d a t a  i s  t o  assume a smal l  f r a c t i o n  of disorganized 
carbon i s  mixed i n  with the  r e l a t i v e l y  well-ordered carbon of t h e  coke. 
fast reac t ion  of t h e  disorganized carbon has been completed, the  rate fa l ls  t o  a 
value t h a t  is c h a r a c t e r i s t i c  of t he  well-organized carbon. 

Two d i s t i n c t  l i n e a r  reg ions  are observed. 

Af t e r  t he  

The & values f o r  the  steam-carbon r eac t ion  have been ca lcu la ted  from the  da ta  
i n  Figs. 6 t o  9 i n  a way similar t o  t h a t  used f o r  t he  air-carbon r eac t ion  ca lcu la t ions .  
These da ta  a r e  shown graphica l ly  i n  Fig. 10. 
energy f o r  t he  274 coke are based on l imi ted  da ta ;  t h e  s lope  obtained at  t h e  low rate 
is about half  of t h a t  a t  the  high ra te .  The value of t he  apparent ac t iva t ion  energy 
ca lcu la ted  from t h e  low r a t e  i s  *82 kcal/mole, which is  i n  the  neighborhood of t h e  
value (80 kcal/mole) reported f o r  t he  graphite-steam system. (1) 

The va lues  of the  apparent a c t i v a t i o n  

The carbon contents  of coa ls  247 and LLL are not very d i f f e r e n t .  The apparent 
ac t iva t ion  energy va lues  obtained f o r  t he  chars  of t hese  two coa l s  a r e  near ly  the  
same ( 2 3  and 27 kcal/mole). 
mole. The ash content of t h i s  sample 
was lower than t h a t  of 247 and LLL samples. 

The value f o r  sample 248 was somewhat h igher ,  %42 kca l /  
This sample belongs t o  SubbC rank of coal. 

This low value of t h e  apparent ac t iva t ion  energy ind ica t e s  t h a t  t he  reac t ion  
s tudied  i n  t h i s  work probably proceeded by a d i f f e r e n t  mechanism than t h a t  f o r  
graphite-steam reac t ion .  
of t h e  ac t iva t ion  energy f o r  t h e  same r eac t ion  tak ing  p lace  i n s i d e  long narrow 
cap i l l a ry ,  .and on a p l a i n  sur face  has been mentioned earlier. 
the  three  char samples, the major pa r t  of t he  reac t ion  could be  occurr ing  i n s i d e  
narrow pores. 
i n  some cases. 

Wheeler's explanation f o r  t h e  d i f f e rence  i n  the  magnitude 

It appears t h a t  f o r  

In addi t ion ,  t h e  reac t ion  may be influenced by c a t a l y t i c  impur i t ies  

(c) Relative r e a c t i v i t y  i n  oxygen and steam 

Walker e t  al . ,  (1) i n  t h e i r  review of t h e  gas-carbon r eac t ion  repor ted  t h a t  the  
r a t e  of carbon-oxygen r eac t ion  was 3 x l o 4  times as rap id  as t h a t  of the  carbon-steam 
reac t ion  under equiva len t  condi t ions  (temperature = 8 O O 0 C ,  pressure  of gas = 0.1  atm). 
The experimental r e s u l t s  used i n  the  above es t imat ion  were obtained pr imar i ly  with 
graphi te .  
tive rates of oxygen t o  steam reac t ion  were ca lcu la ted  using t h e  computational 
method of Walker e t  al. For t h i s  sample t h e  r a t i o  of the  rates of oxygen t o  steam 
reac t ions  was found t o  be only %24 - (T = 800'C and P = 0 .1  atm). 
r a t i o  f o r  the  LLL char would be  even lower because the s lope  of t h e  Arrhenius p lo t  
(char-air)  f o r  t h i s  sample decreased a t  higher temperature. It is  concluded t h a t  the  
r e a c t i v i t y  r a t i o  of oxygen t o  steam reac t ions  with coa l  chars w i l l  be  much lower than 
that  expected f o r  pure forms of carbon. 

From the  experimental da ta  obtained i n  t h i s  work f o r  247 char ,  t h e  rela- 

The r e a c t i v i t y  
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Table 1 

Analyses of Coal 

Percent  as received Percent dry ash b a s i s  
Sample ASTM Moist. Ash. Wt. l o s s  t o  900°C C H N S  0 

(by d i f f )  No. Rank 

274 MVB 1.42 1.75 27.2 86.30 4.32 - 1.2 - 
248 SbbC 16.67 2.48 51.4 75.16 5.15 1.73 0.66 17.26 
247 L 14.10 6.52 50.2 74.43 4.91 1.49 0.53 18.62 
LLL L 29.60 6.50 59.1 74.34 5.52 1.18 0.45 18.51 
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